
iPhone Privacy

Nicolas Seriot∗

http://seriot.ch

Black Hat DC 2010
Arlington, Virginia, USA

Abstract

It is a little known fact that, despite Apple’s claims, any applica-
tions downloaded from the App Store to a standard iPhone can access
a significant quantity of personal data.

This paper explains what data are at risk and how to get them pro-
grammatically without the user’s knowledge. These data include the
phone number, email accounts settings (except passwords), keyboard
cache entries, Safari searches and the most recent GPS location.

This paper shows how malicious applications could pass the manda-
tory App Store review unnoticed and harvest data through officially
sanctioned Apple APIs. Some attack scenarios and recommendations
are also presented.

Keywords: Apple, iPhone, Security, Privacy, App Store, Malware.

∗Nicolas Seriot is a software engineer in Switzerland. He has taught iPhone develop-
ment at Sen:te and is now a scientific collaborator at School of Business and Engineering
Vaud (HEIG–VD). Nicolas holds a Master’s degree in Economic crime investigation.

Contents

1 Introduction 3
1.1 Background facts . 3
1.2 Motivation . 3

2 Privacy, spyware and law 5
2.1 Privacy and spyware . 5
2.2 Swiss law . 5

3 History of iPhone privacy concerns 6
3.1 Root exploits . 7
3.2 Personal data harvesting . 8
3.3 Worms on jailbroken devices 9
3.4 iPhone forensics . 9
3.5 Security solutions editors . 10

4 Writing spyware for the iPhone 10
4.1 Methodology . 10
4.2 Entry points . 11
4.3 Introducing SpyPhone . 13
4.4 Valuable data . 16

5 Getting published on the App Store 18
5.1 App Store and malware . 18
5.2 Hiding the beast . 19
5.3 Apple’s kill switch . 21

6 Attack scenarios 21
6.1 The spammer . 21
6.2 The blackmailer . 22
6.3 The luxury products thief . 22
6.4 The jealous husband . 22
6.5 VIPs . 23

7 Recommendations 23
7.1 For Apple . 23
7.2 For consumers . 25
7.3 For professionals . 26

8 Conclusion 26

References 27

A Sandboxing rules 28

2

1 Introduction

1.1 Background facts

This subsection presents some quick facts and figures for people unfamiliar
with the iPhone.

1.1.1 Market share

Apple introduced the iPhone on June 29, 2007. iPhone worldwide market
share of smartphone sales to end users was 17% in Q3 20091. In late 2009,
34 millions iPhones had beed sold2.

1.1.2 App Store

Developers distribute iPhone applications through Apple’s App Store,
which had more than 100,000 applications available3 in late 2009. As of
January 5, 2010 three billion applications have been downloaded4 in 70
countries worldwide.

1.1.3 Jailbreak

In its standard configuration, the iPhone only runs software cryptographi-
cally signed by Apple. However, iPhone hackers have found ways to circum-
vent this limitation by creating a modified version of the iPhone OS that
will run any code. Installing such a firmware is called “jailbreaking”. Most
“jailbroken” devices feature an SSH server and enable the root login at the
same time. According to Intego5 about 6–8% of all iPhones are “jailbroken”.

1.2 Motivation

1.2.1 Press reports

The second half of 2009 has been a huge commercial success for Apple,
but at the same time numerous reports have surfaced about privacy issues
with the iPhone.

Customers of ID Mobile’s MogoRoad iPhone application are com-
plaining that they’re getting sales calls from the company, a pro-
cess which turns out to be technically a piece of cake.

The Register, 30th September 2009

http://www.theregister.co.uk/2009/09/30/iphone_security/

1http://www.gartner.com/it/page.jsp?id=1224645
2http://www.apple.com/pr/library/
3http://www.apple.com/pr/library/2009/11/04appstore.html
4http://www.apple.com/pr/library/2010/01/05appstore.html
5http://blog.intego.com/2009/11/11/

3

http://www.theregister.co.uk/2009/09/30/iphone_security/
http://www.gartner.com/it/page.jsp?id=1224645
http://www.apple.com/pr/library/
http://www.apple.com/pr/library/2009/11/04appstore.html
http://www.apple.com/pr/library/2010/01/05appstore.html
http://blog.intego.com/2009/11/11/

A maker of some of the most popular games for the iPhone has
been surreptitiously collecting users’ cell numbers without their
permission, according to a federal lawsuit filed Wednesday.

The Register, 6th November 2009

http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_
lawsuit//

iPhone owners in Australia awoke this weekend to find their de-
vices targeted by self-replicating attacks that display an image of
1980s heart throb Rick Astley that’s not easily removed.

The Register, 8th November 2009

http://www.theregister.co.uk/2009/11/08/iphone_worm_rickrolls_
users/

In a world where lost or stolen laptops and phones scream at us
from newspaper headlines and data breaches invite multi-million
dollar government fines and lawsuits, do we want a smartphone
whose insecurity is well documented? In our judgment, no.

Sharon D. Nelson and John W. Simek, Sensei Enterprises, 2009
[4]

Mark Bregman, Symantec’s executive vice president and CTO,
highlighted mobile security as a critical area to monitor in the
new year, in which “more attackers will devote time to create
malware to exploit these devices”. In a separate report, Symantec
noted that Apple’s products, including its popular iPhone, will
face increased attacks from cybercriminals.

ZDNet Asia, 9th December 2009

http://www.zdnetasia.com/news/software/0,39044164,62059902,
00.htm

Should people care? Should they be scared? Can users trust iPhone
applications because they are reviewed by Apple? What about corporate
environments? The aim of the work presented in this paper is to get facts
and a clear view of iPhone privacy issues, in order to help consumers and
professionals taking sensible and well-informed decisions.

1.2.2 Outline of the paper

This paper starts by defining privacy and presenting an overview of past
iPhone privacy issues.

4

http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_lawsuit//
http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_lawsuit//
http://www.theregister.co.uk/2009/11/08/iphone_worm_rickrolls_users/
http://www.theregister.co.uk/2009/11/08/iphone_worm_rickrolls_users/
http://www.zdnetasia.com/news/software/0,39044164,62059902,00.htm
http://www.zdnetasia.com/news/software/0,39044164,62059902,00.htm

Next, it specifically considers the unmodified devices and examines what
sensitive data may be compromised by an application downloaded from the
App Store. Because seeing is believing, the source code of a proof-of-concept
malicious application was made available publicly.

This paper goes on to explain how a malicious application could be crafted
to fool Apple’s mandatory reviews in order to be accepted on the App Store.
Finally, it discusses several attack scenarios, tries to suggest improvements
and delivers basic recommendations.

This paper doesn’t try to compare other mobile platforms such as An-
droid, Windows Mobile or BlackBerry. It also doesn’t discuss data harvest-
ing on desktop computers.

2 Privacy, spyware and law

2.1 Privacy and spyware

According to the Merriam-Webster’s dictionary, privacy is the quality or
state of being apart from (. . .) observation. In the context of spyware
applications, we can consider privacy more narrowly as personal data confi-
dentiality.

By spyware, I mean an application that gathers personal data without the
user’s knowledge and consent. So what is personal data? At the end of the
day, the definition that matters is the legal one. Of course, it depends on the
country one lives in. Because the author of this paper lives in Switzerland, let
us have a quick look at Swiss law, which is quite strict regarding protection
of privacy.

Note that this law is only applicable if the spyware author is either resident
in Switzerland, or if the government can successfully negotiate extradition
to Switzerland. In the European Union, the extradition is allowed by the
Convention on Cybercrime6.

2.2 Swiss law

2.2.1 Personal data

The Swiss Federal Constitution states that everyone has the right to be
protected against the misuse of their personal data (Art. 13 al. 2). Personal

6http://conventions.coe.int/Treaty/EN/Treaties/html/185.htm

5

http://conventions.coe.int/Treaty/EN/Treaties/html/185.htm

data are then defined in a specific law called the Federal Act on Data Pro-
tection (FIDP), which defines personal data as all information relating to
an identified or identifiable person (FIDP Art. 3 lit. a).

2.2.2 Personality profile

The same law defines a collection of personal data as a “personality pro-
file”. It permits an assessment of the essential characteristics of the per-
sonality of a natural person (FIDP Art. 3 lit. d). Personality profiles are
especially protected and strictly regulated (eg. FIDP Art. 11 lit. a al. 3).

2.2.3 Spyware authors

Now, where are the legal responsibilities? Spyware authors may be jailed
for up to three years and have to pay big fines for “obtaining personal data
without authorization” (Criminal Code Art. 179 novies). Also, applicable
civil laws can be used to impose hefty fines (Breaches of privacy FIDP Art.
12.2, Breach of obligations to provide information or to cooperate FIDP Art.
34). This is scarcely applied, though.

2.2.4 End users

End users are protected from over reaching End User License Agreements
(EULAs). Arbitrary provisions that have been “snuck into” EULAs are void
(Civil Code Art. 2 al. 1). Thus, the EULA cannot simply state that you
agree to send your personal data to bad guys if you do not. There must be
a real mutual agreement, ruling out the use of potentially misleading terms
(Civil Code).

2.2.5 Technical staff

In case of damages, civil liability may apply to technical staff if the plaintiff
can prove that an organization failed to protect confidential data properly
(FIDP-O Art. 8, 9, 10, 11, 12). Under this law, liability could extend all
the way to Apple itself. For more detail, see this document [2] by the Swiss
Federal Data Protection and Information Commissioner.

3 History of iPhone privacy concerns

This section presents the main privacy issues that have been encountered
on the iPhone. Figure 1 summarizes them on a timeline.

6

…2007…2007…2007…2007 20082008200820082008 20092009200920092009200920092009

Root
exploits

libtifflibtiffRoot
exploits SMS fuzzingSMS fuzzingSMS fuzzingSMS fuzzingSMS fuzzingSMS fuzzingSMS fuzzing

Pulled out
from

AppStore

Aurora FaintAurora FaintAurora FaintAurora FaintAurora FaintPulled out
from

AppStore MogoRoadMogoRoadMogoRoadMogoRoad

Lawsuits Storm8Storm8Storm8Storm8Storm8Storm8

Analytics PinchMedia concernsPinchMedia concernsPinchMedia concernsPinchMedia concernsPinchMedia concernsPinchMedia concernsPinchMedia concerns

Worms Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)Ikee & co. (jailbreak)

OS 1.01.01.0 1.11.1 2.02.0 2.1 2.22.2 3.03.03.0 3.13.13.13.1

Figure 1: Timeline of the main past privacy issues

3.1 Root exploits

Here are two well known root exploits on the iPhone. The vulnerabilities
were quickly patched by Apple, but could have been exploited to steal private
data.

3.1.1 libtiff

July 2007. The first exploit was due to multiple buffer overflows7 discov-
ered in libtiff by Tavis Ormandy. The vulnerable libtiff version was used
by the Apple’s ImageIO framework. The simple opening of a maliciously
crafted TIFF image could lead to arbitrary code execution, as demonstrated8

by Rik Farrow. Apple patched9 this vulnerability in iPhone OS 1.1.2.

3.1.2 SMS fuzzing

July 2009. This exploit was presented at Black Hat USA 2009 by Charlie
Miller and Collin Mulliner. The researchers presented an iPhone vulnera-
bility10 that could allow a hacker to seize control of the phone through ma-
liciously crafted SMS messages. The vulnerability was patched11 in iPhone
OS 3.0.1.

7CVE-2006-3459, CVE-2006-3461, CVE-2006-3462, CVE-2006-3465
8http://www.fastcompany.com/multimedia/2007/11/hacking-the-iphone.html
9http://support.apple.com/kb/HT2170

10http://securityevaluators.com/content/news/index.jsp?topic=iphone_sms_

2009
11http://support.apple.com/kb/HT3754

7

http://www.fastcompany.com/multimedia/2007/11/hacking-the-iphone.html
http://support.apple.com/kb/HT2170
http://securityevaluators.com/content/news/index.jsp?topic=iphone_sms_2009
http://securityevaluators.com/content/news/index.jsp?topic=iphone_sms_2009
http://support.apple.com/kb/HT3754

3.2 Personal data harvesting

3.2.1 Aurora Feint

In July 2008, the popular iPhone game Aurora Feint was the first appli-
cation to be pulled from the App Store due to privacy concerns. The game
would upload all the contacts stored in the iPhone to the developer’s server,
allegedly to discover if any of the user’s friends also play that game.

3.2.2 MogoRoad

In September 2009, the Swiss road traffic information application MogoRoad
was pulled from App Store after users complained they got sales calls from
the company. MogoRoad is back on App Store after Mogo’s explanations12.

3.2.3 Storm8 complaint

In November 2009, a federal lawsuit was filed in California against iPhone
applications editor Storm8, whose games had already been downloaded more
than 20 million times. The games were harvesting the user’s phone number13

without encryption. Since then, Storm8 games have stopped collecting the
users’ phone numbers.

3.2.4 Pinch Media

Pinch Media14 is a free analytics framework used by many iPhone devel-
opers. It collects anonymous usage data from mobile phone applications and
could be compared to Google Analytics.

In July 2009, some bloggers started to raise serious concerns15 about Pinch
Media, claiming that iPhone users were being tracked by some applications
without their knowledge and without the possibility of opting out. Accord-
ing16 to Pinch Media, the collected data are:

– a unique hardware identifier
– the model of your phone and operating system
– the application’s name and version
– the result of a check to see if the device has been jailbroken
– the result of a check to see if the application has been stolen
– the length of time the application was run

12http://www.mogo.ch/presse/ID_MOBILE_COMMUNICATE_MOGOROAD_EN.pdf
13http://www.sfgate.com/cgi-bin/blogs/ybenjamin/detail?entry_id=46236
14http://www.pinchmedia.com/
15http://i-phone-home.blogspot.com/2009/07/pinchmedia-anatomy-of-spyware-vendor.

html
16http://www.pinchmedia.com/blog/pinch-media-user-privacy-and-spyware/

8

http://www.mogo.ch/presse/ID_MOBILE_COMMUNICATE_MOGOROAD_EN.pdf
http://www.sfgate.com/cgi-bin/blogs/ybenjamin/detail?entry_id=46236
http://www.pinchmedia.com/
http://i-phone-home.blogspot.com/2009/07/pinchmedia-anatomy-of-spyware-vendor.html
http://i-phone-home.blogspot.com/2009/07/pinchmedia-anatomy-of-spyware-vendor.html
http://www.pinchmedia.com/blog/pinch-media-user-privacy-and-spyware/

– if the user explicitly agrees to share it, the user’s location
– if the application uses Facebook Connect, the gender & age of the user

3.3 Worms on jailbroken devices

November 2009 saw an important wave of worm attacks targeting jail-
broken iPhones. All of them exploit the fact that very few users bother to
change the default root password (alpine) after jailbreaking their iPhone
and installing an SSH server.

3.3.1 Ikee

Ikee is the first known iPhone worm. It changes the iPhone’s wallpa-
per and displays a photograph of 1980s singer Rick Astley with the words
Ikee is never gonna give you up. It was written by a 21-year old australian
programmer, who was subsequently hired by the Australian iPhone devel-
opment company mogeneration.

3.3.2 Dutch 5 e ransom

This worm locked the screen with the following message: Your iPhone’s
been hacked because it’s really insecure! Please visit doiop.com/iHacked and
secure your iPhone right now!, until the user had paid a 5 e ransom on a
PayPal account. The Dutch hacker has now taken down his PayPal, returned
the money he earned and published free instructions on how to remove the
backdoor.

3.3.3 iPhone / Privacy.A

This worm steals personal data but, unlike the previous worms, does not
reveal its presence.

3.3.4 Ikee.B / Duh

This worm is highly pernicious. It connects to a Lithuanian master, like
a traditional botnet node. It changes the root password into “ohshit”,
steals private data and attempts to infect other hosts. The worm also tries
to exploit ING Direct bank’s two-factor authentication by using SMS. This
worm was analyzed by SRI International [5].

3.4 iPhone forensics

Physical access to any device means that pretty much everything can be
compromised, with the notable exception of passwords, which are stored
encrypted in the phones Keychain.

9

Jonathan Zdziarski [3] showed that both the passcode and the disk en-
cryption could be bypassed and the full iPhone disk image could be retrieved
unencrypted by an investigator with the proper tools. This led an unnamed
mid-sized US law firm (50 plus lawyers) to completely ban the iPhone17.

An interesting white paper [6] on iPhone forensics was also released in
March 2009 by viaForensics.

3.5 Security solutions editors

As a result of the late 2009 worms, Apple got a lot of bad press, much of
which was unjustified. Some people criticize Apple for having an insecure
configuration, whereas in fact worms only target jailbroken devices that have
an SSH server and root access with the default password. It has also been
suggested that jailbroken iPhone are more secure than stock devices because
users can theoretically install firewalls.

Neither firewalls nor antivirus products are available for stock iPhones,
from either Apple or third parties, so, not surprisingly, security software
editors are among the most vocal critics.

Chester Wisniewski from Sophos writes on his blog that iPhones are not
ready for the business environment18 because they can be jailbroken. This is
somewhat unfair. Would anybody claim that Linux is not ready for business
because you can exploit a weak default root password on an SSH server?

Thus, F-Secure19 and Intego20 argue that Apple should modify the iPhone
OS design and allow background running applications with a broader access
to the OS, which would have the significant effect of allowing vendors to
offer security solutions to iPhone users.

4 Writing spyware for the iPhone

4.1 Methodology

Now imagine that we would like to write a spyware for the iPhone. It
would look like a breakout game and actually play breakout but, at the
same time, silently harvest personal data and send them to a remote server.

17http://ridethelightning.senseient.com/2009/12/my-entry.html
18http://www.sophos.com/blogs/chetw/g/2009/11/21/malicious-iphone-worm-loose/
19http://www.itpro.co.uk/618154/security-firms-cannot-protect-the-iphone-from-threats
20http://www.theregister.co.uk/2009/11/25/iphone_anti_malware/

10

http://ridethelightning.senseient.com/2009/12/my-entry.html
http://www.sophos.com/blogs/chetw/g/2009/11/21/malicious-iphone-worm-loose/
http://www.itpro.co.uk/618154/security-firms-cannot-protect-the-iphone-from-threats
http://www.theregister.co.uk/2009/11/25/iphone_anti_malware/

In order to reach the App Store, the spyware can’t normally use private
APIs, because this is forbidden by Apple and checked during the mandatory
review process. It must also run on a non-jailbroken iPhone, namely on the
original iPhone OS version 3.1.2, which is the latest version available at the
time of writing.

Let’s look for entry points to steal personal data within these constraints.
We consider neither hardware attacks — see [3] on this matter — nor root
exploits. Also, we don’t target the information voluntarily submitted by
users, such as Facebook or Twitter profiles, although a real-life spyware
would certainly be interested in these data. It would be really easy to
harvest Twitter or Facebook details, by offering to upload high scores to
social networks.

4.2 Entry points

4.2.1 Cell Number

The first and easiest item of personal data to collect is the user’s phone
number. This number is entered in iTunes when the phone is first connected.
The good news is that you can change it anytime in iPhone Settings. The
number is stored in the file .GlobalPrefrences.plist. Listing 1 shows hot
to retrieve the number programmatically.

Listing 1: Retrieve the cell phone number
NSDictionary *d = [NSUserDefaults standardUserDefaults];

NSString *phone = [d valueForKey:@"SBFormattedPhoneNumber"];

Novice iPhone programmers sometimes think that they need the cell
number, when in fact they just need some kind of device-specific identi-
fier. In this case, they should use the Objective-C method -[UIDevice
uniqueIdentifier]. Note that this unique identifier can also raise privacy
concerns, as discussed in section 7.1.6.

4.2.2 Address Book

Another way to collect personal data is through the Address Book API. It
turns out that the full Address Book is readable without the user’s knowledge
or consent. It contains names, users’ phone numbers and email addresses,
but also a “notes field”, in which many Mac users store sensitive data such as
door codes or bank accounts. These notes are synchronized with the user’s
computer and may be harvested on the iPhone. Moreover, a spyware can
edit the Address Book, that is add, change or delete any record, without
the user’s knowledge or consent.

11

This surprising state of affairs appears to reflect a deliberate decision by
Apple. This API is very similar to the one on the Mac, but it lacks the “Me”
record, as if Apple had sought to prevent the iPhone owner identification.

Spammers can easily retrieve all the email addresses, and more sinister
scenarios are all too readily imaginable. For example, if a rogue application
alters the email addresses, there is a great potential for harm, because the
Mail application displays the contact’s full name only, and a confidential
email could be sent to the wrong address (see attack scenarios section 6).

The Address Book issue is one of the most serious for corporate environ-
ments.

4.2.3 File system

Next, we consider the data that can be read on the iPhone filesystem.
A sandboxing mechanism limits access to other application’s data. Third-
party applications are installed in /private/var/mobile/Applications/
and are prevented from seeing each other or accessing specific locations,
such as the Music Library for instance.

The sandboxing mechanism is implemented at the kernel level and de-
scribed by a set of rules shown in the file SandboxTemplate.sb (appendix
A). See man sandbox on Mac OS X for more details.

About the sandboxing mechanism, Apple writes:

Applications on the device are “sandboxed” so they cannot access
data stored by other applications.

In addition, system files, resources, and the kernel are shielded
from the user’s application space.

Apple, iPhone in Business: Security Overview [1]

It turns out that, despite sandboxing, numerous system and application
preference files are in fact readable (see listing 2) by downloaded applica-
tions, and some of them contain personal data. This concerns primarily
preference files in plist format, but is not limited to them. The file system
can be browsed and the content of these files viewed using the open-source
file system browser FSWalker21.

21http://fswalker.googlecode.com/

12

http://fswalker.googlecode.com/

Indeed, as suggested by the comments found in the file in the appendix
A, the sandbox rules are far too loose. This appears to be a case of security
being sacrificed in the rush to get a product to market.

Note that our spyware doesn’t even need undocumented APIs to read
these files. Also, the user is never asked nor informed of the application
poking the file system. He cannot prevent it.

Listing 2: Printing the paths readable on the file system
- (void)printReadablePaths {

NSFileManager *fm = [NSFileManager defaultManager];

NSDirectoryEnumerator *dirEnumerator = [fm enumeratorAtPath:@"/"];

NSString *path = nil;

while(path = [dirEnumerator nextObject]) {

if([fm isReadableFileAtPath:path]) {

NSLog(@"-- %@", path);

}

}

}

4.3 Introducing SpyPhone

At this point, we know where to find personal data, including the phone
number, the Address Book contents and several other pieces of data readable
on the file system. A spyware would want to gather the potentially valuable
information from all these sources. SpyPhone22 is an open-source23 proof
of concept “that does just that”. Figure 2 shows the files actually read by
SpyPhone. Let’s have an overview of the data the rogue application can
collect. You may want to look at the source code for details.

The spyware can access the 20 most recent Safari searches (figure 3) and
YouTube history (figure 4). It can access the email account parameters
(figure 6), such as the full name of the user, the email address, as well as
the host and login. The password is kept safe in the Keychain. The email
content itself is not accessible, thanks to correct sandbox rules.

The spyware can access data about the phone (figure 5) itself, starting
with the phone number, as discussed in section 4.2.1. The spyware can also
read the iPhone UUID (through a documented API), the ICCID (SIM card
serial number) and the IMSI (International Mobile Subscriber Identity),
making it possible to track users even when they change their device. IMSI
reveals the country and the mobile operator.

22http://github.com/nst/spyphone/
23You still need an iPhone developer certificate to install it on a non jailbroken iPhone.

13

http://github.com/nst/spyphone/

/var/mobile/Library/Keyboard/

/var/mobile/Library/Preferences/com.apple.accountsettings.plist

/var/mobile/Library/Preferences/com.apple.commcenter.plist

/var/mobile/Library/Preferences/com.apple.mobilephone.settings.plist

/var/mobile/Library/Preferences/com.apple.mobilephone.plist

/var/mobile/Library/Preferences/com.apple.mobilesafari.plist

/var/mobile/Library/Preferences/com.apple.preferences.datetime.plist

/var/mobile/Library/Preferences/com.apple.weather.plist

/var/mobile/Library/Preferences/com.apple.youtube.plist

/var/mobile/Library/Preferences/com.apple.Maps.plist

/var/mobile/Media/DCIM/

Figure 2: Paths actually read by SpyPhone

Figure 7 shows the email addresses stored in the Address Book database.
It is also possible to display any other field, as discussed in 4.2.2.

The keyboard cache contains all the words ever typed on the keyboard,
except the ones entered in password fields. This is supposed to help au-
tocompletion but this mechanism effectively acts as a key-logger, storing
potentially private and confidential names and numbers. Figure 9 shows the
structure of a keyboard cache file containing the dictionary. There is one
cache file per language. The keyboard cache can be reset in iPhone Settings.

Any application has read and write access to the DCIM directory that
contains the photos stored in the iPhone. By default, these photos are tagged
with the GPS coordinate. By listing (figure 10) the date and location of each
one, SpyPhone can thus keep detailed track of a user’s physical movements.
These data can then be mapped (figure 11). Note that SpyPhone can also
send the photo itself by reading it on the file system, where a program
would normally be able to access only one image at a time through the
UIImagePickerController class, chosen by the user, and without EXIF and
GPS data.

The first time an application needs to access the GPS location, it prompts
the user. But a spyware could also gain a pretty accurate estimate of the
user’s location without enabling the GPS. It could simply read the previous
position in the Maps application preferences (figure 12). It could also know
which areas you are in simply by reading the weather cities. A marketer
rarely needs a more precise location.

Another file keeps track of every time you join a Wifi network. Based on
these logs, it is possible to gain insights into the user recents’ whereabouts.

14

Figure 3: Safari Searches History Figure 4: YouTube History

Figure 5: Phone and Hardware Figure 6: The email accounts

15

Figure 7: AddressBook emails Figure 8: The keyboard cache

hexdump -C dynamic-text.dat

00000000 44 79 6e 61 6d 69 63 44 69 63 74 69 6f 6e 61 72 |DynamicDictionar|

00000010 79 2d 34 00 00 00 00 02 63 6f 6e 66 65 72 65 6e |y-4.....conferen|

00000020 63 65 00 74 65 73 74 00 00 00 00 00 00 00 00 06 |ce.test.........|

00000030 01 62 6c 61 63 6b 68 61 74 00 01 68 65 69 67 00 |.blackhat..heig.|

00000040 01 76 64 00 01 67 76 61 00 01 6c 68 72 00 01 69 |.vd..gva..lhr..i|

00000050 61 64 00 |ad.|

00000053

Figure 9: A keyboard cache file. There is one per language.

For instance, our spyware knows that, on January 19th, I was as at school
at 19:28 and then at Café du Simplon at 20:18 (figure 13).

4.4 Valuable data

Safari recent searches (figure 3), YouTube history (figure 4) and your
keyboard cache (figure 8) give clues about your current interests. These
interests are linked with your name and your email addresses (figure 6),
your phone number (figure 5) and your area (figure 12). Harvested from
large numbers of users, such data have a huge value in the underground
market of personal data, and it must be assumed that trojans are in fact
exploiting this on the App Store.

16

Figure 10: Geotagged photos. . . Figure 11: . . . displayed on a map

Figure 12: Location guess Figure 13: Wifi connection log

17

Also, the approximate location (figure 12), recent calls (figure 5, geo-
tagged photos (figure 10) and Wifi connection logs are potentially valuable
for forensics purposes.

5 Getting published on the App Store

To be published on Apple’s App Store, an application must be submitted
by a developer enrolled in the (paid) “iPhone Developer Program”24. Apple
only gets the executable file, not the source code. Next, the application
goes through an approval process which mainly looks for user interface in-
consistencies but also undocumented function calls and yes, malware. The
challenge for a malware author is to go unnoticed through this process.
When approved, the binary is properly signed by Apple and can be run on
any device. For paid applications, Apple keeps 30% of the revenues.

5.1 App Store and malware

5.1.1 The purpose of reviews

Apple’s tight control over the App Store is resented by many25 devel-
opers26. Moreover, it normally takes about one week, which may be pro-
hibitively slow for security updates. This delay can be shortened by asking
for an expedite review, though. The reasons for rejection are often27 per-
ceived to be arbitrary and unreasonable.

Apple’s senior vice president Phil Schiller explained28 that Apple needs to
ensure that everything works as expected by consumers. Apple also intends
to reject applications which are in a legal gray zone such a casino gambling
or collecting personal data, which seems only reasonable. Nonetheless, with
some 10,000 binaries submitted each week, invariably, some malware are
going to sneak through.

5.1.2 iPhone software development kit agreement

Every iPhone developer is bound by the terms of Apple’s iPhone SDK
Agreement. Unfortunately, this agreement forbids iPhone developers from
commenting on its terms and conditions:

24http://developer.apple.com/iphone/program/
25http://www.joehewitt.com/post/innocent-until-proven-guilty/
26http://www.paulgraham.com/apple.html
27http://www.tuaw.com/2008/08/07/thoughts-on-the-iphone-app-store-review-process/
28http://www.businessweek.com/print/technology/content/nov2009/tc20091120_

354597.htm

18

http://developer.apple.com/iphone/program/
http://www.joehewitt.com/post/innocent-until-proven-guilty/
http://www.paulgraham.com/apple.html
http://www.tuaw.com/2008/08/07/thoughts-on-the-iphone-app-store-review-process/
http://www.businessweek.com/print/technology/content/nov2009/tc20091120_354597.htm
http://www.businessweek.com/print/technology/content/nov2009/tc20091120_354597.htm

5.4 You may not issue any press releases or make any other
public statements regarding this Agreement, its terms and condi-
tions, or the relationship of the parties without Apple’s express
prior written approval, which may be withheld at Apple’s discre-
tion.

As a consequence, I won’t be commenting further here, except to note that
it states that developers should comply with local laws and regulations, and
should not harvest users’ personal information. Spyware submitted to the
App Store are rejected on this basis.

The content of the agreement has been divulged on Wikileak and Wired29.

5.2 Hiding the beast

5.2.1 The review process

The exact App Store analysis reviewing process is unknown and the fol-
lowing considerations are only guesswork based on actual App Store rejec-
tions30 and knowledge of Apple development tools. Nonetheless, it is safe
to assume that Apple probably mixes static and dynamic analysis.

Note that even if Apple had access to the source code, it probably could
not afford a full security code review, and malware authors would just hide
malicious behavior a bit better, as demonstrated each year in the Under-
handed C Contest31.

5.2.2 Static analysis

The static analysis probably consist of dumping the strings in the binary
file — say with the “strings” command — and checking them against a
black list of forbidden class and method names as well as file paths. This
process can easily be circumvented with simple yet effective obfuscation
techniques, as shown in listing 3.

Listing 3: Simple yet effective string obfuscation technique
- (NSString *)stringMinus1:(NSString *)s {

NSMutableString *s2 = [NSMutableString string];

for(int i = 0; i < [s length]; i++) {

unichar c = [s characterAtIndex:i];

[s2 appendFormat:@"%C", c-1];

}

return s2;

29http://wired.com/images_blogs/gadgetlab/files/iphone-sdk-agreement.pdf
30http://appreview.tumblr.com/
31http://underhanded.xcott.com/

19

http://wired.com/images_blogs/gadgetlab/files/iphone-sdk-agreement.pdf
http://appreview.tumblr.com/
http://underhanded.xcott.com/

}

- (void)viewDidAppear:(BOOL)animated {

NSString *pathPlus1 =

@"0wbs0npcjmf0Mjcsbsz0Qsfgfsfodft0dpn/bqqmf/bddpvoutfuujoht/qmjtu";

// @"/var/mobile/Library/Preferences/com.apple.accountsettings.plist"

NSString *path = [self stringMinus1:pathPlus1];

NSDictionary *d = [NSDictionary dictionaryWithContentsOfFile:path];

// ...

}

5.2.3 Dynamic analysis

The dynamic analysis probably consists in running the “I/O Activity”
instrument in Apple’s Instruments application and checking the paths of
opened files against a black list of forbidden paths. Such a process is easily
circumvented by delaying the malicious behavior to a later date, triggered
by a flag to be set remotely or activated only in a specific geographic area.

5.2.4 Private APIs

Apple is known to look for calls to private APIs (undocumented APIs)
and reject applications on that basis. This is why our SpyPhone application
does not use any of them and indeed it does not really need to.

However, a real spyware author probably wouldn’t mind and would take
advantage of Objective-C’s ability to lookup classes and selectors by name at
runtime. This way, he could define them remotely or obfuscate their usage.

According to my research, using private APIs doesn’t help much in har-
vesting personal data. The most interesting piece of data is the IMEI number
(listing 4), which uniquely identifies a specific mobile phone being used on
a mobile network.

Private APIs can be browsed with iPhone Objective-C Runtime Browser32.

Listing 4: Using a private API to dynamically retrieve the IMEI number
NSString *path = @"/System/Library/PrivateFrameworks/Message.framework";

BOOL bundleLoaded = [[NSBundle bundleWithPath:path] load];

Class NetworkController = NSClassFromString(@"NetworkController");

NSString *IMEI = [[NetworkController sharedInstance] IMEI];

32http://runtimebrowser.googlecode.com

20

http://runtimebrowser.googlecode.com

5.3 Apple’s kill switch

Rumor has it that Apple can remotely deactivate iPhone applications.
In July 2008, iPhone forensics expert Jonathan Zdziarski [3] discovered a
URL (see figure 14) with a Core Location33 black list. This black list can
prevent an application from using the Core Location functionalities, as an
anonymous contact at Apple confirmed34 to noted Mac blogger John Gruber.
However, Apple has apparently never used the black list nor acknowledged
its existence publicly.

How would our SpyPhone be affected by this kill switch? The short answer
is: not at all! SpyPhone uses various informations to estimate the location,
including the last GPS lookup from Maps, and does not use Core Location
directly.

curl https://iphone-services.apple.com/clbl/unauthorizedApps

{

"Date Generated" = "2010-01-20 17:23:37 Etc/GMT";

"BlackListedApps" = {};

}

Figure 14: Core Location black list

6 Attack scenarios

Here are some attack scenarios, outlining the potential consequences of
a “privacy attack” and illustrating ways in which iPhone security is not as
good as it should be.

6.1 The spammer

A breakout game is made available for free on Apple’s App Store. While
you are playing breakout, it reads your email address, your recent Safari
searches, your weather cities and the words contained in your keyboard
cache.

When you submit your high score to the application’s server, stolen in-
formation is sent at the same time in an encrypted form. The application
also sends all the email addresses in your address book.

33Core Location is the iPhone’s framework for locating the device’s position through
GPS or A-GPS.

34http://daringfireball.net/2008/08/core_location_blacklist

21

http://daringfireball.net/2008/08/core_location_blacklist

Now the spammer knows your interests from Safari searches and the key-
board cache. It also knows your location thanks to weather cities. This
information can then be used to send you targeted commercial offers, or it
can be sold on to other parties.

6.2 The blackmailer

A collaborative application on Hollywood gossip is made available for free
on the App Store. While giving clues about spotting stars, it surreptitiously
goes through your address book and edits the email addresses.

Knowing that film industry people are likely to download this applica-
tion, the emails they send are diverted to a clandestine server, providing
potentially compromising private information to a prospective blackmailer.

The approach can be tailored to produce the same scenario in the indus-
trial, political or financial world.

6.3 The luxury products thief

An application for Rolls Royce owners or art collectors could report the
name, the area, the phone and the geotagged photos of wealthy people. This
is enough informations to rob them, especially if it can be determined that
the targeted individuals are currently away from home.

6.4 The jealous husband

Unlike the previous scenarios, this one needs a physical access to the
device.

A detective, an evil competitor or even a jealous husband may be inter-
ested in stealing the personal data in an iPhone to which they have physical
access. All that is needed to do so is a Mac, a 99 USD Apple developer
license and a USB cable. It takes just five minutes to install SpyPhone,
steal the personal data with the “email report” function, erase the evidence
by deleting the sent mail and delete SpyPhone itself.

Nothing has been jailbroken, no expensive device wiper was involved, and
a horde of valuable personal data has been stolen. The iPhone owner need
never suspect anything, and the jealous spouse or business competitor has
full liberty to study Wifi connection logs, photo library dates and geotags
for evidence that, say, the partner was not at the office at a given time.

22

Figure 15: French Prime Minister
and French former Justice Min-
ister using an iPhone (business-
week.com).

Figure 16: François Fillon showing his
iPhone on TV (iphon.fr).

6.5 VIPs

It is easy to imagine how an attack could be targeted against a particular
individual. For example, French Prime Minister François Fillon (figures 15
and 16) is very proud of his iPhone and takes it everywhere. Fillon is a
native of the French region called la Sarthe, where he also has his political
roots. There is a significant likelihood that he would download an iPhone
application designed to provide local breaking political news. It does not
take much imagination to see the potential for damage in such a scenario.

7 Recommendations

7.1 For Apple

7.1.1 Don’t rely on security through obscurity

First of all, Apple should stop claiming [1] that an application cannot ac-
cess data from other applications (see 4.2.3). This is clearly wrong, mislead-
ing and dangerous. Secondly, Apple should decide if the observed behavior,
present since day one, is a flaw or not. If it is not, then Apple should docu-
ment it properly. But if it is, Apple may have to review its secure software
development lifecycle (S-SDLC) process. Given Apple’s interest in corporate
environments and the level of competition, this is a matter of credibility.

7.1.2 Wifi connection log and keyboard cache

There is no reason why the wifi connection logs should be readable. The
same applies to the keyboard cache, which should be an OS service asso-
ciated with text fields. It should not be possible to retrieve their whole
contents.

23

7.1.3 Firewall and analytics frameworks

The iPhone clearly lacks an optional outbound firewall similar to Lit-
tleSnitch35 on the Mac. Such a service would allow people to opt-out from
the various analytics frameworks. An alternative would be to implement
a single switch that gives consumers some kind of universal or per frame-
work tracking opt-out option. This is what PrivaCy36 does in the jailbroken
world.

At the end of the day, the fact that so many developers use analytics
frameworks may be a hint to Apple to give more usage information to de-
velopers, and provide users a setting to opt-out.

7.1.4 Address Book

Users should be required to grant access to the Address Book (see 4.2.2)
individually for each application, as is currently the case for the Core Loca-
tion framework. A breakout game has no business accessing your contacts.
Moreover, a separate request should be prompted before editing the Address
Book. I may want to authorize a quick dialer to retrieve my contacts, but I
certainly don’t want it to change them without my knowledge and consent.

The risk, naturally, is that the security rules and settings become over-
whelming, as in Windows Vista or in the Java security model, which shifts
the burden entirely to the consumer. The resulting annoyance and irritation
leads many users to simply allow everything.

7.1.5 Towards Apple approved security policies?

To stay in line with the current model where most of the iPhone security
depends on Apple and not the user, Apple could ask application develop-
ers to establish a security policy for their applications. For instance, the
Info.plist file could contain a Policy dictionary allowing HTTP access to
a specific URL and Core Location usage, but preventing Address Book or
file system access. These policies would then be assessed by Apple’s review-
ers (figure 17). This might be one way to mitigate risk without the user
having to manage complex security policies.

This approach is actually a very simple version of a self-defined sandbox-
ing principle called model-carrying [7]. The generation of models could be
automated, and it would be possible for the App Store pages to describe it

35http://www.obdev.at/products/littlesnitch/
36http://cydia.saurik.com/package/com.saurik.privacy

24

http://www.obdev.at/products/littlesnitch/
http://cydia.saurik.com/package/com.saurik.privacy

App
Store

Developer User

Application

Security Policy

Application

Security Policy

Apple's Signature

Figure 17: Developers could submit a security policy with their application.
Apple would ensure that authorizations are tight enough, and risks would
be mitigated without users being overwhelmed with security pop-ups.

in simple terms to potential customers. This is where a closed system could
actually be a benefit for users who just want their phone to work.

7.1.6 Device unique identifier

The device unique identifier is currently available through the official
SDK’s API. While it is not personal data since it cannot identify a physical
person, it may be used to aggregate data collected from various applications
and analytics frameworks.

As a general rule, an application should not be able to know which other
applications you have run. Users merely accept cross-site cookies on the
web, they probably would not accept their computer’s unique identifier to
be transmitted to Google Analytics.

A possible solution for Apple would be to add something like an app-
device identifier or ADID. This value would be unique for a given device
and the requesting application. The current device unique identifier could
be kept, but the user should be asked to allow or deny its usage, as with
Core Location.

7.2 For consumers

Consumers should be aware that iPhone security is far from perfect and
that a piece of software downloaded from the App Store may still be harmful.
As a basic precaution, users should regularly clean the browser’s recent
searches and the keyboard cache in Settings. They should also change or
delete the declared phone number, also in Settings.

25

7.3 For professionals

Professional users should avoid running untrusted applications, especially
if they are required by law to protect data confidentiality. This includes
groups such as bankers, attorneys, medical staff, law enforcement officers
and so on. Also, legal departments should be aware that confidential data
may already have leaked.

An answer to this potential spyware issue may be Apple’s program for
iPhone enterprise deployment37, which lets administrators create configura-
tion profiles enforcing restrictions such as disabling Safari or disabling the
App Store.

8 Conclusion

Overall, Apple has addressed iPhone security in a sensible manner to pro-
tect most of the data. The file system permissions rely both on Unix permis-
sions and on the sandboxing system. Passwords are kept safe, encrypted in
the Keychain. Application databases are not readable by other applications.
Overall security improves with each new iPhone version, but some basic se-
curity principles are still not correctly implemented, in particular the least
privilege principle, the deny by default principle and also a recognition that
it is dangerous for Apple to deny the existence of vulnerabilities.

Unix permissions, sandboxing system rule sets and App Store reviews are
all very well in theory but their actual implementation is flawed. Numerous
files are still readable directly by an application downloaded from App Store
(section 4.3), mainly preference files, but also the photo library including
geotags, the keyboard cache and the Wifi joined networks history. Combined
with full access to the Address Book and the phone number, these data are
too tempting for cybercriminals not to be exploited by spyware, especially
in a store dominated by free and “one-buck” applications.

To be useful, a trojan would still need to be distributed on the App Store.
The fact that our SpyPhone application does not use private APIs would
greatly help it pass unnoticed through the App Store review. The huge
quantity of submissions, and the fact that reviewers only have the binary
code to review, make it easy to hide the malicious behavior, as shown in
section 5.2. Consequently, it must be assumed that spyware are currently
on the App Store.

37http://www.apple.com/iphone/business/integration/

26

http://www.apple.com/iphone/business/integration/

While the fact that personal data are accessible will not be a complete
surprise for experienced iPhone developers, the scale of such access probably
will. Some may consider that this is unavoidable and therefore normal. Such
an attitude, however, amounts to denial, and exposes users to major privacy
incidents including massive identity theft and other targeted attacks (section
6).

It is a matter of concern that, two years and a half after iPhone’s introduc-
tion, and despite its huge commercial success, Apple has not fully addressed
several basic filesystem privacy issues and, even worse, continues to dissemi-
nate misleading information in its public documentation on iPhone security
(section 4.2.3). The danger is therefore that the problem, far from being a
bug that you can fix, may be closer to something like a design flaw.

I hope that this paper will give the general public and professionals a
clearer view of the real risks, and some clues on how to assess and mitigate
these risks, so that they can decide themselves how they should use their
iPhones properly in their private lives or corporate environments.

I also want to make it clear that you should have no illusion: in the fast-
paced environment of smartphone operating systems, every platform has its
own flaws. To Apple’s credit, it has at least a first line of defense against
harmful applications, in the form of App Store reviews. At a time when
malware are appearing on Android Marketplace38, this defense should be
retained and improved.

Acknowledgments

I would like to thank everyone who has taken the time to review this paper
and exchange their views with mine, especially Graham Lee (@iamleeg),
Dominique Bongard (@reversity), Eduard Friesen and Joël Spaltenstein, as
well as several other anonymous reviewers.

References

[1] Apple, iPhone in Business: Security Overview, http://images.apple.
com/iphone/business/docs/iPhone_Security_Overview.pdf

[2] Swiss Federal Data Protection and Information Commissioner, La
protection des données et Internet, http://www.edoeb.admin.ch/
dokumentation/00898/

38http://www.theregister.co.uk/2010/01/11/android_phishing_app/

27

http://images.apple.com/iphone/business/docs/iPhone_Security_Overview.pdf
http://images.apple.com/iphone/business/docs/iPhone_Security_Overview.pdf
http://www.edoeb.admin.ch/dokumentation/00898/
http://www.edoeb.admin.ch/dokumentation/00898/
http://www.theregister.co.uk/2010/01/11/android_phishing_app/

[3] Jonathan Zdziarski, iPhone Forensics: Recovering Evidence, Personal
Data and Corporate Assets, O’Reilly Media, September 2008, http:
//oreilly.com/catalog/9780596153595

[4] Sharon D. Nelson and John W. Simek, Why Lawyers Shouldn’t Use
The iPhone: A Security Nightmare, Sensei Enterprises, Inc http://
www.senseient.com/articles/pdf/iphone_security.pdf

[5] Phillip Porras, Hassen Saidi and Vinod Yegneswaran, An analysis of
the Ikee.B (Duh) iPhone botnet, SRI International, Menlo Park, USA
http://mtc.sri.com/iPhone/

[6] Andrew Hoog and Kyle Gaffaney, iPhone Forensics, viaForen-
sics, http://viaforensics.com/wpinstall/wp-content/uploads/
2009/03/iPhone-Forensics-2009.pdf

[7] R. Sekar and V. Venkatakrishnan and S. Basu and S. Bhatkar and D.
DuVarney, Model-carrying code: A practical approach for safe execution
of untrusted applications., In ACM Symposium on Operating System
Principles (SOSP), Bolton Landing, New York, October 2003. http:
//www.cs.sunysb.edu/~sas/papers/nspw01.pdf

A Sandboxing rules

Here is the file /usr/share/sandbox/SandboxTemplate.sb, which doc-
uments the rules enforced at the kernel level. Comments are part of the
original file.

(version 1)

(deny default)

; Sandbox violations get logged to syslog via kernel logging.

(debug deny)

(allow sysctl-read)

; Mount / umount commands

(deny file-write-mount file-write-umount)

; System is read only

(allow file-read*)

(deny file-write*)

; NOTE: Later rules override earlier rules.

; Private areas

(deny file-write*

(regex "^/private/var/mobile/Applications/.*$"))

28

http://oreilly.com/catalog/9780596153595
http://oreilly.com/catalog/9780596153595
http://www.senseient.com/articles/pdf/iphone_security.pdf
http://www.senseient.com/articles/pdf/iphone_security.pdf
http://mtc.sri.com/iPhone/
http://viaforensics.com/wpinstall/wp-content/uploads/2009/03/iPhone-Forensics-2009.pdf
http://viaforensics.com/wpinstall/wp-content/uploads/2009/03/iPhone-Forensics-2009.pdf
http://www.cs.sunysb.edu/~sas/papers/nspw01.pdf
http://www.cs.sunysb.edu/~sas/papers/nspw01.pdf

(deny file-read*

(regex "^/private/var/mobile/Applications/.*$"))

; SQLite uses /private/var/tmp

; TBR: <rdar://problem/5805879> SQLite doesn’t honor

; the TMPDIR environment variable

(allow file-write*

(regex "^/private/var/tmp(/|$)"))

(allow file-read*

(regex "^/private/var/tmp(/|$)"))

; TBR: <rdar://problem/5806524>

(allow process-exec

(regex "^/private/var/tmp$"))

; TBR: <rdar://problem/5830139>

(allow file-write*

(regex "^/private/var/tmp/UpdatedSnapshots/$"))

; Permit reading and writing in the App container

(allow file-read*

(regex "^/private/var/mobile/Applications/ \

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX(/|$)"))

(allow file-write*

(regex "^/private/var/mobile/Applications/ \

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/(tmp|Library|Documents)(/|$)"))

(allow process-exec

(regex #"^/private/var/mobile/Applications/ \

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/.*\.app(/|$)"))

; Allow Address book access via filesystem

; This is an SQLite3 database - there is room to make the rules tighter

(allow file-write*

(regex "^/private/var/mobile/Library/AddressBook(/|$)"))

(allow file-read*

(regex "^/private/var/mobile/Library/AddressBook(/|$)"))

; Allow keyboard db access via filesystem

; This is a custom file format. There is room to make the rules tighter

(allow file-write*

(regex "^/private/var/mobile/Library(/Keyboard)?(/|$)"))

(allow file-read*

(regex "^/private/var/mobile/Library(/Keyboard)?(/|$)"))

; Pictures, but not other media

; Allow photo access via filesystem. There is room to make the rules tighter

(deny file-write*

(regex "^/private/var/mobile/Media(/|$)"))

(deny file-read*

(regex "^/private/var/mobile/Media/"))

(allow file-write*

29

(regex "^/private/var/mobile/Media/com.apple.itunes.lock_sync$"))

(allow file-read*

(regex "^/private/var/mobile/Media/com.apple.itunes.lock_sync$"))

(allow file-write*

(regex "^/private/var/mobile/Media/DCIM(/|$)"))

(allow file-read*

(regex "^/private/var/mobile/Media/DCIM(/|$)"))

(allow file-read*

(regex "^/private/var/mobile/Media/Photos(/|$)"))

; Mach lookups. There is room to make the rule tighter.

(allow mach-lookup)

;; (global-name "PurpleSystemEventPort")

;; (global-name "com.apple.CARenderServer")

;; (global-name "com.apple.eventpump")

;; (global-name "com.apple.springboard.migserver")

;; (global-name "com.apple.system.notification_center"))

(deny process-fork)

; For ASL logs - /var/run/asl_input (XXX: socket can now be named)

; (allow network-outbound)

; (to unix-socket "/private/var/run/asl_input"))

(allow network*)

; To allow crash reporter / exceptions to kill the process

(allow signal (target self))

30

	Introduction
	Background facts
	Motivation

	Privacy, spyware and law
	Privacy and spyware
	Swiss law

	History of iPhone privacy concerns
	Root exploits
	Personal data harvesting
	Worms on jailbroken devices
	iPhone forensics
	Security solutions editors

	Writing spyware for the iPhone
	Methodology
	Entry points
	Introducing SpyPhone
	Valuable data

	Getting published on the App Store
	App Store and malware
	Hiding the beast
	Apple's kill switch

	Attack scenarios
	The spammer
	The blackmailer
	The luxury products thief
	The jealous husband
	VIPs

	Recommendations
	For Apple
	For consumers
	For professionals

	Conclusion
	References
	Sandboxing rules

